Moduł rozszerzający – 8 wyjść triakowych

Wersja 1.1

Instrukcja użytkownika

wyprodukowano dla

Dziękujemy za wybór naszego produktu.

Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia.

Informacje zawarte w niniejszej instrukcji przygotowane zostały z najwyższą uwagą przez naszych specjalistów i służą jako opis produktu bez ponoszenia jakiejkolwiek odpowiedzialności w rozumieniu prawa handlowego.

Informacje te nie zwalniają użytkownika z obowiązku poddania produktu własnej ocenie i sprawdzenia jego właściwości.

Zastrzegamy sobie możliwość zmiany parametrów produktów bez powiadomienia.

Prosimy o uważne przeczytanie instrukcji i stosowanie się do zawartych w niej zaleceń

UWAGA!

Niedostosowanie się do instrukcji może spowodować uszkodzenie urządzenia albo utrudnić posługiwanie się sprzętem lub oprogramowaniem.

1. Zasady bezpieczeństwa

- Przed pierwszym uruchomieniem urządzenia należy zapoznać się z niniejszą instrukcją obsługi;
- Przed pierwszym uruchomieniem urządzenia należy upewnić się, że wszystkie przewody zostały podłączone prawidłowo;
- Należy zapewnić właściwe warunki pracy, zgodne ze specyfikacją urządzenia (np.: napięcie zasilania, temperatura, maksymalny pobór prądu);
- Przed dokonaniem jakichkolwiek modyfikacji przyłączeń przewodów, należy wyłączyć napięcie zasilania.

2. Charakterystyka modułu

2.1. Przeznaczenie i opis modułu

Moduł 8TR jest innowacyjnym urządzeniem zapewniającym proste i niedrogie rozszerzenie ilości linii wyjściowych w popularnych sterownikach PLC.

Moduł posiada 8 wyjść triakowych. Wszystkie z wyjścia są izolowane od logiki za pomocą transoptorów.

Moduł ten podłączany jest do magistrali RS485 za pomocą dwu przewodowej skrętki. Komunikacja odbywa się z wykorzystaniem protokołu MODBUS RTU lub MODBUS ASCII. Zastosowanie 32-bitowego procesora z rdzeniem ARM zapewnia szybkie przetwarzanie danych i szybką komunikację. Prędkość transmisji jest konfigurowalna od 2400 do 115200.

Moduł przeznaczony jest do montażu na szynie DIN zgodnie z normą DIN EN 5002.

Moduł został wyposażony z zestaw diod LED (kontrolek), używanych do wskazywania stanu wyjść przydatnych w celach diagnostycznych i pomagających w znalezieniu błędów.

Konfiguracja modułu odbywa się przez USB za pomocą dedykowanego programu komputerowego. Możliwa jest również zmiana parametrów za pomocą protokołu MODBUS.

2.2. Specyfikacja techniczna

Zacilania	Napięcie	10-38 VDC; 10-28 VAC		
Zashame	Prąd maksymalny	200 mA @ 12V / 150 mA @ 24V		
	Liczba wyjść	8		
Wyjścia triakowe	Maksymalne napięcie	400V		
	Maksymalny prąd wyjścia	2A		
Tomporatura	Pracy	-10 °C - +50°C		
Temperatura	Przechowywania	-40 °C - +85°C		
	Zasilające	2 pinowe		
710070	Komunikacyjne	3 pinowe		
21qC2a	Wyjścia	10 pinowe		
	Konfiguracyjne	Mini USB		
	Wysokość	120 mm		
Wymiary	Głębokość	101 mm		
	Szerokość	22,5 mm		
Interfejs	RS485	Do 128 urządzeń		

2.3. Wymiary modułu

Wygląd i wymiary modułu znajdują się na rysunku poniżej. Moduł mocowany jest bezpośrednio do szyny w przemysłowym standardzie DIN. Złącza zasilające, komunikacyjne oraz wejść znajdują się od dołu i góry modułu. Złącze konfiguracyjne USB oraz wskaźniki znajdują się z przodu modułu.

3. Konfiguracja komunikacji

3.1. Uziemienie i ekranowanie

Moduł może być zainstalowany wraz z innymi urządzeniami, które generują promieniowanie elektromagnetyczne. Przykładami takich urządzeń są przekaźniki i styczniki, transformatory, sterowniki silników itp. То promieniowanie elektromagnetyczne może powodować zakłócenia elektryczne zasilania i przewodów sygnałowych, a także promieniując bezpośrednio do modułu, powodując negatywne skutki dla systemu. Odpowiednie uziemienie, osłony oraz inne działania ochronne należy podjąć na etapie instalacji, aby zapobiec tym efektom. Te działania ochronne obejmują m.in. uziemienie szafy sterowniczej, uziemienie modułu, uziemienie ekranowania przewodów, zabezpieczenie urządzeń przełączających, prawidłowego okablowania, jak również uwzględnienie typów kabli i ich przekrojów.

3.2. Terminator

Efekty linii transmisyjnej często powodują problemy w sieciach teleinformatycznych. Problemy te dotyczą najczęściej tłumienia sygnału i odbić w sieci.

Aby wyeliminować obecność odbić od końców kabla, należy na obu jego końcach zastosować rezystor o impedancji równej impedancji charakterystycznej linii. W przypadku skrętki RS485 typową wartością jest 120 Ω.

3.3. Ustalanie adresu modułu w sieci

Poniższa tabela przedstawia sposób ustawienia przełączników w celu ustalenia adresu modułu. Za pomocą przełączników możliwe jest ustawienie adresu od 0 do 31. Adresy od 32 do 255 możliwe są do ustawienia za pomocą magistrali RS485 lub przez złącze USB.

Instrukcja użytkownika

					-						
Adr	SW5	SW4	SW3	SW2	SW1	Adr	SW5	SW4	SW3	SW2	SW1
0	OFF	OFF	OFF	OFF	OFF	11	OFF	ON	OFF	ON	ON
1	OFF	OFF	OFF	OFF	ON	12	OFF	ON	ON	OFF	OFF
2	OFF	OFF	OFF	ON	OFF	13	OFF	ON	ON	OFF	ON
3	OFF	OFF	OFF	ON	ON	14	OFF	ON	ON	ON	OFF
4	OFF	OFF	ON	OFF	OFF	15	OFF	ON	ON	ON	ON
5	OFF	OFF	ON	OFF	ON	16	ON	OFF	OFF	OFF	OFF
6	OFF	OFF	ON	ON	OFF	17	ON	OFF	OFF	OFF	ON
7	OFF	OFF	ON	ON	ON	18	ON	OFF	OFF	ON	OFF
8	OFF	ON	OFF	OFF	OFF	19	ON	OFF	OFF	ON	ON
9	OFF	ON	OFF	OFF	ON	20	ON	OFF	ON	OFF	OFF
10	OFF	ON	OFF	ON	OFF	21	ON	OFF	ON	OFF	ON

11	OFF	ON	OFF	ON	ON
12	OFF	ON	ON	OFF	OFF
13	OFF	ON	ON	OFF	ON
14	OFF	ON	ON	ON	OFF
15	OFF	ON	ON	ON	ON
16	ON	OFF	OFF	OFF	OFF
17	ON	OFF	OFF	OFF	ON
18	ON	OFF	OFF	ON	OFF
19	ON	OFF	OFF	ON	ON
20	ON	OFF	ON	OFF	OFF
21	ON	OFF	ON	OFF	ON

Adr	SW5	SW4	SW3	SW2	SW1
22	ON	OFF	ON	ON	OFF
23	ON	OFF	ON	ON	ON
24	ON	ON	OFF	OFF	OFF
25	ON	ON	OFF	OFF	ON
26	ON	ON	OFF	ON	OFF
27	ON	ON	OFF	ON	ON
28	ON	ON	ON	OFF	OFF
29	ON	ON	ON	OFF	ON
30	ON	ON	ON	ON	OFF
31	ON	ON	ON	ON	ON

3.4. Typy rejestrów Modbus

Są 4 typy zmiennych dostępnych w module.

Тур	Adres początkowy	Zmienna	Dostęp	Rozkaz Modbus
1	00001	Wyjścia cyfrowe	Bitowy Odczyt i zapis	1, 5, 15
2	10001	Wejścia cyfrowe	Bitowy Odczyt	2
3	30001	Rejestry wejściowe	Rejestrowy Odczyt	3
4	40001	Rejestry wyjściowe	Rejestrowy Odczyt i zapis	4, 6, 16

3.5. Ustawienia komunikacji

Dane w modułach przechowywane są w 16 bitowych rejestrach. Dostęp do rejestrów odbywa się za pomocą protokołu MODBUS RTU lub MODBUS ASCII.

3.5.1. **Domyślne parametry**

Domyślną konfigurację można przywrócić za pomocą przełącznika SW6 (szczegóły w 3.5.2 - Przywracanie konfiguracji domyślnej)

Prędkość transmisji	19200
Parzystość	Nie
llość bitów stopu	1
Opóźnienie odpowiedzi [ms]	0
Tryb Modbus	RTU

3.5.2. Przywracanie konfiguracji domyślnej

W celu przywrócenia konfiguracji domyślnej należy przy wyłączonym zasilaniu modułu załączyć przełącznik SW6, a następnie włączyć zasilanie. Moduł zacznie migać na zmianę diodami wskazującymi zasilanie i komunikację. Jeżeli w tym stanie zostanie wyłączony przełącznik SW6 ustawienia zostaną nadpisane.

Uwaga! Podczas przywracania konfiguracji domyślnej wykasowane zostaną również wszystkie inne wartości zapisane w rejestrach modułu!

Adres Modbus	Adres Dec	Adres Hex	Nazwa	Wartości
40003	2	0x02	Prędkość transmisji	0 – 2400 1 – 4800 2 – 9600 3 – 19200 4 – 38400 5 – 57600 6 – 115200 inna wartość – wartość * 10
40005	4	0x04	Parzystość	0 – brak 1 – nieparzystość 2 – parzystość 3 – zawsze 1 4 – zawsze 0
40004	3	0x03	Bity Stopu LSB	1 – jeden bit stopu 2 – dwa bity stopu
40004	3	0x03	Bity Stopu MSB	7 – 7 bitów danych 8 – 8 bitów danych
40006	5	0x05	Opóźnienie odpowiedzi	Czas w ms
40007	6	0x06	Tryb Modbus	0 – RTU 1 – ASCII

3.5.3. Rejestry konfiguracyjne

Instrukcja użytkownika

4. Wskaźniki diodowe

Wskaźnik	Opis
Zasilanie	Zapalona dioda oznacza, że moduł jest poprawnie zasilany.
Komunikacja	Dioda zapala się, gdy moduł odebrał prawidłowy pakiet i wysyła odpowiedź.
Stany wyjść	Zapalona dioda informuje, że wyjście jest załączone.

5. Podłączenie modułu

6. Ustawienia przełączników

Przełącznik	Funkcja	Opis		
1	Adres modułu +1			
2	Adres modułu +2			
3	Adres modułu +4	Ustawienie adresu modułu w zakresie od 0 do 31		
4	Adres modułu +8			
5	Adres modułu +16			
6	Ustawienia domyślne modułu	Ustawienie domyślnych parametrów transmisji (patrz 3.5.1 - Domyślne parametry i 3.5.2 - Przywracanie konfiguracji domyślnej).		

7. Rejestry modułu

7.1. Dostęp rejestrowy

Adres Modbus	Adres Dec	Adres Hex	Nazwa rejestru	Dostęp	Opis
30001	0	0x00	Wersja/Typ	Odczyt	Typ i wersja urządzenia
30002	1	0x01	Przełączniki	Odczyt	Stan przełączników
40003	2	0x02	Prędkość	Odczyt i zapis	Prędkość transmisji
40004	3	0x03	Bity stopu	Odczyt i zapis	llość bitów stopu
40005	4	0x04	Parzystość	Odczyt i zapis	Bit parzystości
40006	5	0x05	Opóźnienie	Odczyt i zapis	Opóźnienie odpowiedzi
40007	6	0x06	Typ Modbus	Odczyt i zapis	Typ protokołu Modbus
40009	8	0x08	Watchdog	Odczyt i zapis	Watchdog
40013	12	0x0C	Domyślny stan wyjść	Odczyt i zapis	Domyślny stan wyjść
40033	32	0x20	Odebrane ramki MSB	Odczyt i zapis	
40034	33	0x21	Odebrane ramki LSB	Odczyt i zapis	nosc odebranych ramek
40035	34	0x22	Błędne ramki MSB	Odczyt i zapis	lloćć odobronych blodnych romok
40036	35	0x23	Błędne ramki LSB	Odczyt i zapis	
40037	36	0x24	Wysłane ramki MSB	Odczyt i zapis	
40038	37	0x25	Wysłane ramki LSB	Odczyt i zapis	HOSC Wystarrych rantek
40052	51	0x33	Wyjścia	Odczyt i zapis	Stan wyjść

7.2. Dostęp bitowy

Adres Modbus	Adres Dec	Adres Hex	Nazwa rejestru	Dostęp	Opis
193	192	0x0C0	Domyślny stan wyjścia 1	Odczyt i zapis	Domyślny stan wyjścia 1
194	193	0x0C1	Domyślny stan wyjścia 2	Odczyt i zapis	Domyślny stan wyjścia 2
195	194	0x0C2	Domyślny stan wyjścia 3	Odczyt i zapis	Domyślny stan wyjścia 3
196	195	0x0C3	Domyślny stan wyjścia 4	Odczyt i zapis	Domyślny stan wyjścia 4
197	196	0x0C4	Domyślny stan wyjścia 5	Odczyt i zapis	Domyślny stan wyjścia 5
198	197	0x0C5	Domyślny stan wyjścia 6	Odczyt i zapis	Domyślny stan wyjścia 6
199	198	0x0C6	Domyślny stan wyjścia 7	Odczyt i zapis	Domyślny stan wyjścia 7
200	199	0x0C7	Domyślny stan wyjścia 8	Odczyt i zapis	Domyślny stan wyjścia 8
817	816	0x330	Wyjście 1	Odczyt i zapis	Stan wyjścia 1
818	817	0x331	Wyjście 2	Odczyt i zapis	Stan wyjścia 2
819	818	0x332	Wyjście 3	Odczyt i zapis	Stan wyjścia 3
820	819	0x333	Wyjście 4	Odczyt i zapis	Stan wyjścia 4
821	820	0x334	Wyjście 5	Odczyt i zapis	Stan wyjścia 5
822	821	0x335	Wyjście 6	Odczyt i zapis	Stan wyjścia 6
823	822	0x336	Wyjście 7	Odczyt i zapis	Stan wyjścia 7
824	823	0x337	Wyjście 8	Odczyt i zapis	Stan wyjścia 8

8. Program konfiguracyjny

Konfigurator jest oprogramowaniem służącym do ustawienia rejestrów odpowiedzialnych za komunikację modułu w magistrali Modbus jak również do odczytu i zapisu aktualnych wartości pozostałych rejestrów modułu. Dzięki temu programowi można w wygodny sposób przetestować układ jak również w czasie rzeczywistym obserwować zmiany w rejestrach.

Komunikacja z modułem odbywa się poprzez kabel USB. Do współdziałania programu z modułem nie jest wymagana instalacja żadnych sterowników.

Konfigurator jest uniwersalnym programem, za pomocą którego możliwa jest konfiguracja wszystkich dostępnych modułów.

ransmisja	Moduł 818O	Moduł	16I Moduł	160 Info			
Konfigura	cja wejść i lic:	zników					
	Stan wejść 🛛						
	Stan lie	znika	Przechwy	cona wartość	Przechwyć	Status	Konfiguracja licznika
Licznik	290330		0				Konfiguruj
Licznik 2	2 101614		0				Konfiguruj
Licznik	3 0		0				Konfiguruj
Licznik 4	1 0		0				Konfiguruj
Licznik !	5 0		0				Konfiguruj
Licznik (5 0		0				Konfiguruj
Licznik	7 0		0				Konfiguruj
Licznik	3 0		0				Konfiguruj
Konfigura	cja wyjść						
	Stan wyjść l	2 2	v		V		
Domválny	stan wviść [¥		
	Watchdog	0					
	l						

Moduł rozszerzający – 8 wyjść triakowych

Instrukcja użytkownika

Spis treści

1. Zasady bezpieczeństwa	3
2. Charakterystyka modułu	3
2.1. Przeznaczenie i opis modułu	3
2.2. Specyfikacja techniczna	4
2.3. Wymiary modułu	5
3. Konfiguracja komunikacji	6
3.1. Uziemienie i ekranowanie	6
3.2. Terminator	6
3.3. Ustalanie adresu modułu w sieci	6
3.4. Typy rejestrów Modbus	7
3.5. Ustawienia komunikacji	7
3.5.1. Domyślne parametry	7
3.5.2. Przywracanie konfiguracji domyślnej	7
3.5.3. Rejestry konfiguracyjne	8
4. Wskaźniki diodowe	9
5. Podłączenie modułu	10
6. Ustawienia przełączników	11
7. Rejestry modułu	12
7.1. Dostęp rejestrowy	12
7.2. Dostęp bitowy	13
8. Program konfiguracyjny	14

<u>ampero@ampero.pl</u> <u>www.ampero.pl</u> tel. +48 58 351 39 89; +48 58 732 71 73

Moduł rozszerzający – 8 wyjść triakowych

Π